MOJOLICIOUS:
REVOLUTIONS

Joe McMahon
pemungkah@me.com

mailto:pemungkah@me.com

EASY 1O GEI STARTESS

$ curl get.mojolicio.us | sh

B N0 or better
BRllEiEe e o other prerequisites

* cpan Mo jolicious If you're allergic to executing random
scripts

» Ultra-simple web development platform

HOW SIMPLE IS |17

use Mojolicious: :Lite;

get ‘'/hi’ => {text => ‘Hello World!'};
get '/bye’ => {text => 'Goodbye World!'};

app->start;

NOW RUN [T

$ morbo hello.pl
Server available at http://127.0.0.1:3000.

$ curl http://127.0.0.1:3000/hi
Hello World!

http://127.0.0.1:3000
http://127.0.0.1:3000

5 TUPID EATS

* Iranslate your URLs into routes
* Write subs for each route
* Run It

« Great for one-offs

MORBO AND HYPNOTOAD

 Morbo

* handy low-traffic web server

* non-blocking I/O

« HT TP and Websocket support
* Hypnotoad
* production-ready server, adds:

* preforking

* hot deployment

EaoE STUDY: AT TP CLIERSS
VALIDATION

 Custom HT TP client/server pair

» Client makes requests, server sends responses

CHICKEN AND EGG

» Not sure If the client works right
» Not sure If the server works right

* How do we get started testing this?

BREAKING THE CIRCLE

» Arbrtrarily pick side A to be source of truth

* Side B will trust it

» Once side B Is tested and known-good, we can test the real
side A with It

WHAIT DO WE NEED!?

* A webserver, obviously
» Accept requests and respond to them In a predictable way

* Throw errors that the client should be able to handle; 400’s,
500’s, timeouts, bad output...

» Actually succeed on a request too

BASIC CLIENT/SERVER
PAT TERN

he client: sends requests, receives responses, may take some
action

lcRtcdlest: a speafic URL (GET, DELE TE), or URIESDIESHE
(POST, PUT, file upload)

* [he server: receives a request, performs some arbitrary
processing, sends a response

* [he response: a specific set of headers and data in a known,
well-defined format

WHAT DO WE KNOW/?

* [he request: some combination of headers, URL, and possibly
data

* The response: headers plus a known set of text

* A (possibly broken) client implementation ready to test

JIM CARREY JEFF DANIELS

FOR MAREY AND LLOYD EVERY DAY 15 A NOSRANER

SERVER CAN BE DUMB

» All we care Is that the response Is right
* |t can be a fixed string, or a string with a few interpolations

& —@ont have to Implement the entire server, |UsESEncRPEES
the right text for a limited set of interactions

* [he dumber It Is, the less likely we are to have bugs

R NO| OO DUMB

* Iraditional web servers only know how to speak HT TR which
IS not smart enough

» Making them respond arbrtrarily to input, even trivially, requires
a significant amount of code

» Mojolicious’s routes and built-in server let us get around this

OUR MADE-UP SERVICE

BWIEEORTfcader required In responses:” X-IMyaES™

» Returned data should be In the expected format (XML)
» Client should handle

* timeouts

» falled and error responses

» Should be able to stop the server (makes tests easier)

» All In one test file would be great

PUR PRIMITIVE CLIERSS

package Client;
use strict;
use warnings;

use Exporter;
@CL1ient: :EXPORT = gw(client server_url);

sub server_url { "http://127.0.0.1:3000" }

sub client {
my $path = shift;

my $mech = WWW::Mechanize->new(timeout=>3); # autocheck on!
$mech->add_header ('Accept’ => ’'application/json’);
$mech->get (“$server_url/my/api/set/$path”) ;

my $x = $mech->response->header(’'X-My’) || ‘NO’;
die “The response from the server did not include an ‘X-My’ header\n”

unless $x eq 'YES';

die "Response was not JSON\n”
unless $mech->response->header(’Content-Type’) eq ‘application/json’;

return $mech->content:

http://127.0.0.1:3000

BASIC 1EST SCAFFOLDIINES

use strict:
use warnings;

use Mojolicious: :Lite;
use WWW: :Mechanize:
use lTest: :More:

use lest::Exception;

use Client:

ST CASE |'NOT MES

H Case 1: Pretend that the server i1sn’t a proper
B target for this client by not returning the
H expected header, but returning valid HTML.

get ‘/my/api/get/timeOfDay’ => sub {
my $self = shift;
$self->render (text =>
‘"This 1sn’t the server you're expecting, move along’);

}

SITIMIE QUTITAKE FIVE

~BLUE RONDO A LA TURK

e CASE 2 [IMEOUT

H Case 2: server times out
get ‘/my/api/get/currentUsers’ => sub {
my $self = shift;

B This 1s Longer than the client’'s timeout threshold;

H client will need to wait an additional 3 seconds (plus 1 for
H good measure)

H before sending another request.

sleep 6;

H Now return a valid response so that the server continues to
H run properly.

B The client will 1ignore this since it will be sent after the
B client timeout expires.
$self->tx->res->headers->header('X-My’, ‘YES');
$self->render(text => ‘Sorry, I was busy’);

ES | CASE 3: INTERNASE
SERVER ERROR

H Case 3: 1internal server error without processing
H request.
get ‘'/my/api/get/nextBackuplime’ => sub {
my $self = shift;
$self->tx->res->headers->header(‘'X-My’, ‘YES’);
$self->tx->res->code(500) ;
$self->render(text => ‘Internal failure, sorry’);

eS| CASE 4: BAD REQUESS

0 Case 4: server processes request but application
B Logic detects a problem.
get ‘/my/api/get/nextBackupDate’ => sub {
my $self = shift;
$self->tx->res->headers->header(‘'X-My’, ‘YES’);
$self->tx->res->code(400) ;
$self->render(text => ‘No backups scheduled’):

S CASE O BAD RESFOINSS
DATA

H Case 5: server processes the request, but returns

B a (non-XML) response.

get ‘/my/api/get/databaseConsistent’ => sub {
my $self = shift;
$self->tx->res->headers->header('X-My’, ‘YES’);
$self->render(text => ‘database OK’);

}

TEST 6: 1T WORKS!

B Case 6: server processes request and returns

H a good response.

get ‘'/my/api/LastUser/:username’ => sub {
my $self = shift;
my $username = $self->stash(’username’);
$self->tx->res->headers->header('X-My’, 'YES'):
$self->render(json => { user => $username });

e

e L SHUT T z
DOWN e

MEET SOMEONE

Case 7: Shut the server down.
get '/my/api/get/shutdown’ => sub {
exlit 0O;

}

FORKING THE SERVER

my $pid;

iR pildh =" fork) {
diag “Waiting for the server to start”;
sleep 5;

J

else {
Local @ARGV = gw(daemon) ;
app->Log->Level(‘error’);
app->start;

}

WRITING THE TESTS

* Now we can use standard testing modules to verify the client
* Test: :More for response testing

* Test: :Exception for successes and fallures

EESE |INOIT TRE
RIGHT SERVER

H Case 1: wrong server
dies_ok

{ $result = client('timeOfDay’) }
‘Wrong server detected’;

Like $@,
qr/The response from the server did not include an ‘X-My’ header/,
‘correct diagnosis of wrong server’;

e L REQUEST
SrdEOU |

Case 2: timeout

dies_ok
{ $result = client(currentUsers’) }
‘timeout detected’;

Like $@,
gr[Error GET1ing .*2currentUsers: read timeout],
‘correct diagnosis of timeout’;
print STDERR "# Resyncing”;
my $wait = 5;
while ($wait) { sleep 1; print STDERR ”“.”; $wait-- }# resync

print STDERR “done\n”;

Like $@,
gr[Error GET1ing .*2currentUsers: read timeout],
‘correct diagnosis of timeout’;

B 5. SERVER
ERROR

H Case 3: internal error

dies_ok
{ $result = client(' nextBackupTime’) }
“internal server error caught’;

Like $@,
gr[Error GETing .*2nextBackuplime: Internal Server Error],
‘correct diagnosis of 1internal server error’;

ot 4+ REQUEST
ERROR

H Case 4. app error
dies_ok

{ $result = client('nextBackupDate’) }
‘caught application error’;

Like $@,
gr[Error GETing .*2nextBackupDate: Bad Request],
‘correct diagnosis of application failure’;

EASE O: BAD
RESPONSE FORMAT

H Case 5: bad response format
dies_ok

{ $result = client('databaseConsistent’) }
‘caught application error’;

Like $@,
gr/Response was not XML/,

‘correct diagnosis of bad response format’;

-
gy

NOSHOUI 1Y

FINALLY, CASE 6: [T WORKS

Case 6: OK
Lives_ok

{ $result = client(’LlastUser/foo’)
}

‘call worked’:

is $result, qgg<{“user”:”foo”}>,
‘got expected data in JSON';

ok | $@, ’‘success’:

ITWINTEST: SHUTDOWN
AND “NO DATA RETURNED"

Case 7: shut down the server

dies_ok
{ $result = client(’'shutdown’) }

‘shutdown occurred’ ;

Like $@,
gr[Error GETing .*¥2shutdown: Server closed connection without

sending any data back],
‘detected closed connection’;

H Clean up server process and we’'re done
waitpid($pid,0);
exlt 0O;

DEMO

MOJOLICIOUS SERVERS

* Simple, easy to set up
* Route map to actions
» [emplating for responses

» Great for building quick web tools

SO MOJOLICIOUS IS A SERVER
DEVELOPMENT TOOL?

NOT SO FAST, SUNSHINE

NOT SO FAST, SUNSHINE
HAT IF IOLD YOU

NOT SO FAST, SUNSHINE
HAT IFIJOLD YOU

\

IT'S AN AMAZING CLIENT

WEB FETCH REFRESHER

require LWP::UserAgent;

my $ua = LWP::UserAgent->new;
$ua->timeout(10);
$ua->env_proxy;

my $response = $ua->get('http://search.cpan.org/');

if ($response->is success) {
print $response->decoded content; # or whatever
}

else {
die $response->status line;

}

https://metacpan.org/module/LWP::UserAgent
http://search.cpan.org/

MOJOLICIOUS VERSION

use 5.0109;
use Mojo: :UserAgent;

my $ua = Mojo::UserAgent->new;

say $ua->get('http://search.cpan.org/"')->res->body;

http://search.cpan.org/

S FE1CH A PAGES TS

GET THE CONTENT

use 5.010;
use LWP::UserAgent;
use HTML: :Parser;

my $ua = LWP::UserAgent—>new;
$ua—>timeout (10);
$ua—>env_proxy;

my $content = $ua—>get(‘http://search.cpan.org/')->decoded_content;

http://search.cpan.org/'

PREPARE [O PARSE

my($title_text, $capture_now);

my $parser = HTML::Parser—>new(
start_h => [\&open_tag, "tagname"],
text_h => [\&conditional _capture, "dtext"],

);

sub open_tag {
my($tagname) = @_;
$capture_now ++ 1if $tagname eq "title",

i

sub conditional _capture {
if ($capture_now) {
$title _text = $ [0];
undef $capture_now;

EXTRACT AND PRINT

Actually extract the <title> tag’s text.
$parser—>parse($content);

say $title_text;

MOJOLICIOUS VERSION

use 5.9010;
use Mojo: :UserAgent;

my $ua = Mojo::UserAgent->new;

say $ua->get(‘http://search.cpan.org/')->res
->dom->html->head->title->text;

BUILI-IN DOM!

http://search.cpan.org/

COMPARISON

« WP version

» 31 lines, 20 minutes, 3 debugger sessions
* Mojolicious version

* less than a minute, 6 lines

AS A ONE-LINER

perl -Mojo -E 'say g("http://search.cpan.org")->dom->html->head->title->text'

http://search.cpan.org

31 alni

bash-3.2% mojo get http://search.cpan.org 'head > title'
<title>The CPAN Search Site - search.cpan.org</title>

Al = [LE LOCHS
LIKE..JQUERY!

http://search.cpan.org

GETTING FANCIER

» Let's extract all the titles from the blogs.perl.org

feed

» We'll need to access the feed, then loop over the

tems

» Not even going to bother writing the

WP version

http://blogs.perl.org

O FEED ACCESS, |2 LN

use 5.010;

use Mojo: :UserAgent;
my Sua = Mojo::UserAgent->new;

Sua->get (‘http://blogs.perl.org/atom.xml')->res
->dom('entry > title')
->each(sub {

state Sn

0;
say ++Sn, ":

", $_—>text

}

http://blogs.perl.org/atom.xml'

bash-3.2% perl mojo-feedread.pl

1: blogs.perl.org users being phished

2: Keep Calm, Roll on.

3: My Favourite Test::% Modules

4: Finding my computer

5: Stupid Lucene Tricks: Storing Non-Documents

6: Rule Role's or Role's Rule?

/: Const::Exporter Released

8: New module Path::Iterator::Rule::RT

9: A Class Without Class

10: Moose Dying With "Invalid version format (version required)"
11: Significant newlines? Or semicolons?

12: GitPrep 1.5 i1s released — Improve HTTP repository access, and
display README in subdirectory

13: Seeking code to find a free TCP/IP port

14: A Race to the Finish

15: Bugs 1in the compiler

16: No Grot 1i1s Good Grot

17: Announcing Test::mongod

18: Easier Database Fixtures

19: Lessons to learn from Apple

20: Towards Type::Tiny 1.000000

21: DC-Baltimore Perl Workshop 2014 - Call For Speakers
22: Frustrated Moose

£, e o-
S @PHP_CEO

IT HAS COME TO MY ATTENTION
THAT SOMEONE CALLED JASON
HAS BEEN ENCODING AND
DECODING DATA IN OUR APFP.
PLEASE CHANGE YOUR
PASSWORDS

DIRECT JSON QUERY AND
PARSE

use 5.010;
use Mojo: :UserAgent;
use Mojo: :URL;

my $ua = Mojo::UserAgent->new;

my $url = Mojo::URL->new('http://api.metacpan.org/v0/release/ search');
$url->query({g => 'MCMAHON', sort => 'date:desc'});
for my $hit (@{ $ua->get($url)->res->json->{hits}{hits} }) {

say “$hit->{ source}{name}\t($hit->{ source}{date})";

¥

https://metacpan.org/module/Mojo::UserAgent
https://metacpan.org/module/Mojo::URL
http://api.metacpan.org/v0/release/_search

CPAN PUSH HISTORY,
TEN LINES

bash-3.2% perl json—-query.mojo

Test—-XML-Simple-1.04 2013-01-26T21:48:33
Test—XML-Simple-1.03 2013-01-26T21:40:34
Date-PeriodParser-0.17 2013-01-26T09:46:51
GraphViz-Data-Structure-0.19 2013-01-26T03:27:36

Test-WWW-Simple-0.34 2013-01-26T03:22:18
Test—XML-Simple-1.02 2013-01-26T02:15:34
URI-ImpliedBase—-0.08 2012-07-08T18:29:34
Test—-XML-Simple-1.01 2012-06-05T20:32:11
Date-PeriodParser-0.14 2011-07-13T04:49:13
Test-Tail-Multi-0.06 2011-07-13T04:42:35

bash-3.2%

SUPPOR S FULL RESS

» Supports all HT TP verbs

el PU L POST, DELETE, PATCH

» Couldn’t get a useful REST server running locally
to demo this...sorry

OTHER PARTS

» PSGI (Plack) support
» cpanify - upload files to CPAN

» generate {app | lite-app | makefile | plugin}

DRAWBACKS

* [here always are some

* [t's all or nothing

QUESTIONS!

THANKS

